Maxime Killinger cb58167e53
Some checks failed
🚀 Docker Build and Push / build-and-push (15) (push) Successful in 7m47s
🚀 Docker Build and Push / build-and-push (16) (push) Successful in 5m42s
🚀 Docker Build and Push / build-and-push (18) (push) Has been cancelled
🚀 Docker Build and Push / build-and-push (17) (push) Has been cancelled
feat: PostgreSQL image with TimescaleDB, VectorChord, pgvector
- Multi-stage Dockerfile for optimized image size (676MB vs 2GB)
- Support for PostgreSQL 15, 16, 17, 18
- TimescaleDB 2.24.0, VectorChord 1.0.0, pgvector 0.8.1
- Auto-creation of extensions on first startup
- CI/CD with tests for all versions
- OCI labels and healthcheck included
2025-12-19 11:57:54 +01:00

TimescaleDB + VectorChord + pgvector

Build Status

Docker image combining PostgreSQL with three powerful extensions:

  • TimescaleDB - Time-series database extension
  • VectorChord - High-performance vector similarity search
  • pgvector - Open-source vector similarity search

Supported PostgreSQL Versions

Tag PostgreSQL TimescaleDB VectorChord pgvector
pg15 15 2.24.0 1.0.0 0.8.1
pg16 16 2.24.0 1.0.0 0.8.1
pg17 17 2.24.0 1.0.0 0.8.1
pg18, latest 18 2.24.0 1.0.0 0.8.1

Quick Start

docker run -d \
  --name my-postgres \
  -e POSTGRES_PASSWORD=mysecretpassword \
  -p 5432:5432 \
  gitea.killinger.fr/maxime.killinger/postgres-ts-vectors:latest

All extensions are automatically created on first startup.

Environment Variables

Variable Description Default
POSTGRES_PASSWORD PostgreSQL password (required) -
POSTGRES_USER PostgreSQL user postgres
POSTGRES_DB Default database postgres

Extensions Usage

TimescaleDB

-- Create a hypertable
CREATE TABLE conditions (
  time TIMESTAMPTZ NOT NULL,
  device_id INTEGER,
  temperature DOUBLE PRECISION
);

SELECT create_hypertable('conditions', 'time');

VectorChord / pgvector

-- Create a table with vector embeddings
CREATE TABLE documents (
  id SERIAL PRIMARY KEY,
  content TEXT,
  embedding vector(1536)
);

-- Create an index for fast similarity search
CREATE INDEX ON documents USING vchordrq (embedding vector_l2_ops);

-- Query similar documents
SELECT * FROM documents
ORDER BY embedding <-> '[0.1, 0.2, ...]'
LIMIT 10;

Building Locally

# Build for PG18
docker build --build-arg PG_VERSION=18 -t my-image:pg18 .

# Build for PG16
docker build --build-arg PG_VERSION=16 -t my-image:pg16 .

License

This project is licensed under the Apache 2.0 License.

Description
No description provided
Readme 46 KiB
Languages
Dockerfile 64.8%
Shell 35.2%